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Abstract: At high energy densities any quantum field theory is expected to have an

effective hydrodynamic description. When combined with the gravity/gauge duality an

unified picture emerges, where gravity itself can have a formal holographic hydrodynamic

description. This provides a powerful tool to study black holes in a hydrodynamic setup.

We study the stability of plasma balls, holographic duals of Scherck-Schwarz (SS) AdS black

holes. We find that rotating plasma balls are unstable against m-lobed perturbations for

rotation rates higher than a critical value. This unstable mode signals a bifurcation to

a new branch of non-axisymmetric stationary solutions which resemble a “peanut-like”

rotating plasma. The gravitational dual of the rotating plasma ball must then be unstable

and possibly decay to a non-axisymmetric long-lived SS AdS black hole. This instability

provides therefore a mechanism that bounds the rotation of SS black holes. Our results

are strictly valid for the SS AdS gravity theory dual to a SS gauge theory. The latter is

particularly important because it shares common features with QCD, namely it is non-

conformal, non-supersymmetric and has a confinement/deconfinement phase transition.

We focus our analysis in 3-dimensional plasmas dual to SS AdS5 black holes, but many of

our results should extend to higher dimensions and to other gauge theory/gravity dualities

with confined/deconfined phases and admitting a fluid description.
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1 Introduction

The equations of fluid dynamics and properties of fluids at large have been used for cen-

turies, not only to describe fluids but also as analogue models for other more complex

phenomena. For instance, early experiments with liquid drops by Plateau [1] were aimed

at understanding the effect of gravity on planets (surface tension was then a model for

the gravitational force). Another well-known example, is Bohr and Wheeler’s [2] proposal

to describe nuclear fission as the rupture of a charged liquid drop, where now the surface

tension plays the role of nuclear forces. In general relativity, the membrane paradigm,

whereby a black hole horizon is mimicked by a stretched fluid membrane, provides another

example of the power of analogue models, with useful applications in astrophysical systems.

Still in a gravity setup, it was recently suggested to use fluid analogs to explain phenom-

ena observed in general relativistic scenarios, in particular the classical instability of black
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strings and branes [3]. Accordingly, the gravitational Gregory-Laflamme instability would

have a counterpart in the Rayleigh-Plateau instability of fluid mechanics [4, 5] (responsible

for the breakup of liquid jets and tubes).

1.1 Dual hydrodynamic description of gravity

The anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence adds an interesting

twist to this story, making these analogies powerful and formal. Indeed, it has emerged with

the work of Fermi [6], Landau [7] and others, that often the complicated time dependent

dynamics of quantum fields is approximated by a fluid model description. It seems in fact

that any gauge theory has a hydrodynamic limit [8, 9]. Combining these ideas together

one expects gravity to have a dual hydrodynamic description [9]. This expectation has

been formally verified in [10, 11], and later in [12, 13], where it was explicitly shown that

a gravitational geometry satisfies perturbatively Einstein-AdS gravity to any order as long

as the associated holographic stress tensor T µν (read from the AdS/CFT dictionary) has

vanishing spacetime divergence, ∇νT
µν = 0. One recognizes the latter equations as those

that govern fluid dynamics. At leading order the stress tensor is that of a perfect fluid;

in the next-to-leading order in the perturbation, T µν gets a contribution that describes

viscosity and dissipation effects; at higher order T µν provides information about the fluid

relaxation timescales. Thus Einstein-AdS gravity is indeed dual to hydrodynamics, in the

appropriate regime.

The hydrodynamic description of gravity [10–13] has support on the AdS/CFT duality,

relating type IIB string theory on AdS5 × S5 with N = 4 Super Yang-Mills (SYM) gauge

theory. SYM differs considerably from QCD. For example, as opposed to SYM, QCD is

non-conformal, non-supersymmetric (non-SUSY) and has both a confined and a deconfined

phase. Thus, the holy graal of the field is to find a string/QCD duality, which would allow

one to study hard non-perturbative phenomena in QCD through a weak-coupling perturba-

tive analysis of the dual string system, and vice-versa. So far this programme has not been

completed (see [14, 15] for discussions), however some gravity/gauge dualities are known

where the gauge theory shares some important common features with QCD. The simplest

example is the Scherk-Schwarz (SS) compactification of a 5-dimensional (5d) CFT which

yields a 4d non-conformal, non-SUSY gauge theory with a confinement/deconfinement

phase transition [16].1 The original CFT is 5d maximally SUSY SYM theory that de-

scribes field excitations living in a stack of D4-branes. Identifying periodically one of the

worldvolume directions of the D4-branes, imposing anti-periodic boundary conditions for

the fermions along this direction, and finally dimensionally reducing along this compact

direction one gets the desired SS gauge theory. The gravitational dual description of this

system is obtained by taking the appropriate decoupling limit of the geometry describing

the near-extremal D4-branes with the compact SS worldvolume direction. Because of the

1SS theory has a transition from a hadronic phase to a gluon phase. To have instead a quark-gluon

phase at high temperature we need to add fundamental matter to the model. This can be done through the

introduction of probe D6-branes [17] or D8-branes [18]. The latter system is known as holographic QCD or

Sakai-Sugimoto model. Currently, these gauge systems are the closest to QCD we can have with a theory

that has a gravity dual [15].
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presence of this SS direction there are two solutions: one is a black brane (deconfined

gluon phase) and the other one is the AdS-soliton (confined hadronic phase) [19]. The

solution that dominates the partition function is the one that minimizes the free energy of

the system. One finds that there is a critical temperature Tc - the confinement tempera-

ture - above (below) which the black brane (AdS-soliton) minimizes the free energy [16].

The confinement temperature is the one where the Euclidean time circle has the same

length as the SS circle. At this confinement temperature the two phases can co-habit in

equilibrium separated by a domain wall. Not less important, at this temperature one can

have a confinement/deconfinement phase transition in the gauge theory which corresponds

in the dual gravity side to a phase transition between the thermal AdS-soliton and the

black brane phases [16] (in the context of global AdS backgrounds the transition between

thermal global AdS and the Schwarzchild black hole solution is known as Hawking-Page

phase transition). Some of these properties are schematically represented in figure 1.a).

The black hole, solution of the SS compactification of AdS5 gravity on a circle, that inter-

polates between the black brane phase and the AdS-soliton confined phase with a domain

wall in between is still not known. But in ref. [20] a numerical solution was found which

describes an infinite planar domain wall separating the black brane in one side from the

confined AdS-soliton on the other, at the confinement temperature. This solution is ex-

pected to describe approximately the near-horizon geometry of the above mentioned black

hole solution in the limit where the black hole is large.

Strong arguments suggest that at high energy densities the SS compactification of

5d CFT also has a long wavelength effective hydrodynamical description [20]. Indeed,

as described two paragraphs above this is certainly true for a CFT, and a similar proof

(although necessarily more complicated) should follow similarly for a SS compactification

of a CFT. Then, the corresponding gravity/gauge duality, asserts that 3d fluid dynamics

provides an effective theory describing the SS compactification of AdS5 gravity in the long

wavelength regime [20, 21]. That is, on the boundary of a SS compactification of AdS5

(asymptoting to M3×S1, with S1 the distinguished SS circle), the black hole is described by

a plasma lump immersed on the vacuum confined phase with a domain wall with surface

tension separating the two phases. This is schematically represented in figure 1.b). In

this description, the black hole horizon maps to the full plasma lump bulk, not to its

boundary. The SS circle plays a minor role on the fluid description (meaning that the

plasma lumps are translationally invariant along this direction) but as we enter through

the radial holographic direction into the bulk, the SS circle must shrink to zero size at the

horizon where the domain wall is. This implies that the topology of the corresponding event

horizon is given by the fibration of the SS circle S1 over the plasma lump geometry, with

the circle shrinking to a point on the boundary. So, e.g., a plasma ball with a disk topology

D2 corresponds in the bulk to a black hole with horizon topology S3, and a plasma ring

with topology S1 × I is dual to a black ring with topology S1 × S2 [21]. To leading order,

i.e., without dissipation, the plasma lump is described by a perfect fluid stress tensor with

an equation of state characterizing the fluid from which the gauge theory is “made of”.

The domain wall contributes with a boundary term, proportional to its surface tension, to

the stress tensor. Finally, the system is calibrated in such a way that the confined phase
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Figure 1. (a) Dominating phases in the gauge theory and in gravity. For temperatures below the

confinement temperature Tc, the confined hadronic phase (AdS-soliton in gravity) dominates the

partition function, while above Tc the deconfined gluon phase (black brane in gravity) dominates.

At Tc the system suffers a first order confinement/deconfinement phase transition. (b) At Tc and

in its vicinity, in the dual fluid description on the boundary of the AdS gravity solution, the black

hole is described by a plasma phase immersed in the confined vacuum phase and separated by a

domain wall with surface tension.

exterior to the plasma lump is vacuum with zero pressure. These plasma balls and plasma

rings were studied in great detail in [21] with an emphasis on the AdS5 case, and the full

phase diagram for balls and rings in AdS6 was obtained more recently in [22].

1.2 A brief summary of our results

In the present study we analyze the stability of these plasma lumps, with an emphasis on

plasma balls. We find that rotating plasma balls are unstable against m-lobed perturba-

tions (with m being the azimuthal number of the perturbation) if their rotation is higher

than a critical value. We further find that the marginal unstable mode is a bifurcation

point to a new branch of stationary solutions in the phase diagram of solutions. This new

phase describes m-lobed plasma lumps. In the simplest m = 2 case we have a 2-lobed

configuration which presumably (if we draw from experience with classical incompressible

fluids [23–25]) goes over to a peanut-like configuration for large enough angular momentum.

In this work, we shall refer to such solutions interchangeably as rotating plasma peanut,

or 2-lobed configurations. A phase diagram including also this new family is sketched in

figure 2. The associated gauge/gravity duality will then be used to predict that black

holes asymptoting to a SS compactification of AdS5 should also be unstable to m-lobed

perturbations. The result of the current study provides a good example of how the hydro-

dynamic description of gravity can provide a powerful predictive tool to discuss black hole

physics and the associated dual gauge theory. Note that although we restrict our analy-

sis to d = 3 plasmas dual to black objects in SS AdS5, our main results and conclusions

should extend to any d-dimensional plasma lump dual to SS AdSd+2 black objects, and to

other gauge/gravity dualities with confined and deconfined phases and admitting a fluid

description (see however discussion in section 6).

The instability of rotating plasma balls could have been guessed from classical works

and experiments with rotating fluids [1, 23, 24, 26, 27]. A similar reasoning was recently

used [13, 28] to relate the Gregory-Laflamme gravitational instability of black strings and
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Figure 2. Schematic phase diagram with angular velocity vs angular momentum of stationary

solutions at fixed energy. The rotating plasma balls and plasma rings (“fat” and “thin” rings merge

at point M) phases were already studied in ref. [21]. Here we find that above a critical rotation

(represented by points A, B, . . . ), plasma balls become unstable against m-lobed perturbations

(the unstable balls are represented by a dash line). The marginal point where the instability sets in

is a bifurcation point to a new branch of non-axisymmetric m-lobed plasma lumps. In the simplest

m = 2 case, this is a rotating plasma peanut. This phase diagram summarizes some of our main

results, accurately represented in figure 7.

branes to the Rayleigh-Plateau instability of plasma tubes. In the rest of this introduction

we describe with some detail the aforementioned classical studies on rotating fluids.

The stability of incompressible 4d non-relativistic fluids was studied in detail by Chan-

drasekhar [23] and later completed by Brown and Scriven [24], for fluids held by surface

tension and in the absence of gravity. The analysis was extended in ref. [5] to a general

number of spacetime dimensions. In short these works found the following. Start with a

static fluid ball and slowly add rotation. The fluid ball starts to flatten at the poles. One

finds a critical rotation frequency Ωc, after which two or more families can co-exist. One of

the families is the axisymmetric one. Proceeding along this family while increasing rota-

tion, one finds a second critical frequency Ω∗ at which the ball “pinches” at the origin, and

becomes a doughnut like configuration. The axisymmetric family was found to be unstable

to small perturbations after the point Ωc. The other family that bifurcates off at Ωc is

a “two-lobed” configuration (see figures 1 and 2 in [5]). Close enough to the bifurcation

point, this family is stable to small perturbations. There are other families, three-lobed,

four-lobed, etc, branching off at different points as one increases rotation. These seem

to be always unstable. Recent accurate experiments [26] have confirmed the existence,

bifurcation points, and stability properties of these families. This kind of evolution dia-

gram was found to hold also in gravitationally bound (Newtonian) objects with the same

qualitative behavior: the Mac-Laurin configuration being the axisymmetric family and the

Jacobi sequence, a tri-axial ellipsoid, branching off at the bifurcation point [29].

The plan of the rest of the paper is the following. section 2 reviews the relativistic

hydrodynamic equations, the equilibrium conditions, equation of state, and the conserved

charges, that govern a Scherk-Schwarz plasma in a 3d Minkowski background (we try to

be self-contained). Section 3 then discusses the properties of the axisymmetric lumps of

– 5 –



J
H
E
P
0
4
(
2
0
0
9
)
1
2
5

the theory, namely the plasma balls and plasma rings, and discusses the regime of validity

of the hydrodynamic description. In section 4 we discuss in detail the stability of plasma

balls, the stability of plasma rings is deferred to appendix A. In section 5 we find that the

marginal stable mode found in the previous section is a bifurcation point to a new branch

of lobed lumps. Section 6 discusses the consequences of these findings to the phase diagram

of black hole solutions in SS AdS gravity.

2 Relativistic hydrodynamic equations

Here we review the relativistic hydrodynamic equations governing a Scherk-Schwarz plasma

in a 3d Minkowski background. We also derive the dissipation contribution to the hydrody-

namic equations which are not easy to find in the literature. We will be interested in plasma

configurations in mechanical and thermodynamic equilibrium. We follow closely [21, 28].

2.1 Relativistic hydrodynamic equations

Fluid mechanics is an effective description at long distances, valid when the fluid variables

vary on distance scales that are large compared to the mean free path lmfp of the system.

As a consequence it is natural to expand the stress tensor in powers of derivatives of the

four-velocity uµ. To zeroth order in the derivative expansion, Lorentz invariance and the

correct static limit uniquely determine that the stress tensor is the sum of the perfect fluid

plus boundary contributions,

T µν
perf = (ρ+ P )uµuν + Pgµν , T µν

bdry = −σhµν |∂f | δ(f) . (2.1)

Here, uµ is the fluid velocity, ρ, P and σ are the density, pressure and surface tension

of the fluid. The fluid boundary is defined by f(xµ) = 0, it has unit spacelike normal

nµ = ∂µf/|∂f |, and hµν = gµν − nµnν is the projector onto the boundary.

The first subleading order of the derivative expansion introduces dissipation effects in

the problem. Lorentz invariance and the physical requirement that entropy variation is

non-negative demands that the dissipation stress tensor is [30]2

T µν
diss = −ζϑPµν − 2ησµν + qµuν + uµqν , (2.2)

where ζ is the bulk viscosity, η is the shear viscosity, κ is the thermal conductivity, and

(for d = 3)

aµ = uν∇νu
µ , ϑ = ∇µu

µ,

σµν =
1

2

(
Pµλ∇λu

ν + P νλ∇λu
µ
)
− 1

2
ϑPµν , qµ = −κPµν(∂νT + aνT ) , (2.3)

2At leading order the entropy current density is (Jµ
S )perf = suµ and is conserved. In the first subleading

order, one gets the extra dissipative contribution (Jµ
S )diss = qµ

T
. The entropy current density Jµ

S = (Jµ
S )perf+

(Jµ
S )diss is no longer conserved and satisfies T ∇µJµ

S =
qµqµ

κT
+ ζθ2 + 2ησµνσµν > 0 as long as η, ζ and κ are

positive parameters, as we assume [21]. In equilibrium, ∇µJµ
S must vanish. It follows that, qµ, θ and σµν

must vanish in equilibrium.

– 6 –
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are the acceleration, expansion, shear viscosity tensor, and heat flux, respectively. The last

equation is the relativistic Fourier law.

The hydrodynamic equations describe the conservation of the stress tensor,

∇µ

(
T µν

perf + T µν
bdry + T µν

diss

)
= 0 . (2.4)

It then follows that in the presence of dissipation, the relativistic continuity, Navier-Stokes

and Young-Laplace equations, are respectively given by3

uµ∇µρ+ (ρ+ P )ϑ = ζϑ2 − qµaµ −∇µq
µ + 2ησµν∇µuν , (2.5)

(ρ+ P )aν = −Pµν∇µP + ζ (Pµν∇µϑ+ ϑuµ∇µu
ν)

+2η (∇µσ
µν − uνσµα∇µuα)

− (qµ∇µu
ν + ϑqν + uµ∇µq

ν − qµaµu
ν) , with Pµν ≡ gµν +uµuν ,

(2.6)
[
P − ζϑ+ 2η

(
1

2
ϑ+ uµnα∇αnµ

)]<

>

= σK , with K ≡ h ν
µ ∇νn

µ , (2.7)

where Pµν is the projector onto the hypersurface orthogonal to uµ, K is the boundary’s

extrinsic curvature, and [Q]<> ≡ Q< −Q> is the jump on a quantity Q when we cross the

boundary from the interior into the exterior of the plasma (we will be interested in the case

where the plasma object is immersed in vacuum; then the outside contribution in the lhs

of (2.7) vanishes). In the derivation of eq. (2.7), the constraint that the fluid velocity must

be orthogonal to the boundary normal is used (this guarantees that the fluid is confined

inside the boundary),

uµnµ = 0 . (2.8)

For a conformal plasma it is well-known that the bulk viscosity coefficient vanishes, ζ = 0,

and that the ratio of the shear viscosity η to the entropy density s of the plasma is η
s = 1

4π .

However, our system is described by a Scherk-Schwarz plasma that is not conformal and

the dissipation coefficients satisfy the relations ζ > 0, η
s >

1
4π and κ > 0.

2.2 Hydrodynamical and thermal equilibrium conditions. Equation of state

In this subsection we briefly review some general results derived in ref. [28] valid for equi-

librium and general (non-)axisymmetric plasma configurations. We focus our discussion

on fluids in a 3d Minkowski background4 with stationarity timelike Killing vector ξ = ∂t

and spacelike Killing vector χ = ∂φ, but the results of [28] were derived for a general

background geometry.

3To go from (2.4) into (2.5)–(2.7) note that (2.4) reduces to a volume and a boundary contributions. The

latter gives the Young-Laplace equation while the former yields the Continuity and Navier-Stokes equations.

To get these we use ∇µΘ(−f) = − (∂µf) ,∇µδ(f) = −|∂f |nµ δ(f), uνuν = −1, hµνnµ = 0, P µνuµ = 0,

uνaν = 0, uµnµ = 0, qµuµ = 0, σµνuµ = 0, uµuµ = −1, nµnµ = 1, and ∇αgµν = 0. We also use properties

of the type: nνnν = 1 implies nνnµ∇µnν = 0.
4We use polar coordinates (t, r, φ), and the non-vanishing affine connections are Γr

φφ = −r and Γφ
rφ =

Γφ
φr = 1/r.

– 7 –
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A fluid with local entropy density s and local temperature T satisfies the Euler relation

and the Gibbs-Duhem relation given, respectively, by

ρ+ P = T s , dP = sdT , (2.9)

where the latter relation follows from differentiating the former relation and use of the first

law of thermodynamics. Using these relations and demanding hydrodynamic (i.e., mechan-

ical) equilibrium we find that the plasma must also be in thermodynamic equilibrium [28].

So, equilibrium plasma configurations must satisfy the hydrodynamic equations discussed

in the previous subsection with vanishing subleading dissipation and diffusion contribu-

tions. It then follows that any stationary fluid configuration with local temperature T
must have a velocity given by

u =
T
T

(ξ − Ωχ) . (2.10)

with constant T and Ω. So stationary configurations are rigidly rotating equilibrium so-

lutions with constant plasma temperature T related to the local temperature T by the

Lorentz factor (we use u2 = −1),

γ =
T
T

=
[
−(ξ − Ωχ)2

]−1/2
, (2.11)

which is the redshift factor relating measurements done in the laboratory and comov-

ing frames.

Combining the Euler relation (2.9) and the Young-Laplace equation (equation (2.7)

without the dissipative terms), we can relate the plasma temperature T to a combination

of several magnitudes at the fluid surface,

T =
σK + ρ

γs
. (2.12)

We see that T is not simply proportional to the surface tension or to the mean curvature,

although it grows linearly with both [28]. For a static fluid K will be constant over the

surface, but in a stationary configuration K is not a constant along the boundary. In the

duality to a black hole, T corresponds to the Hawking temperature of the horizon.

A universal behavior of fluids is that they always pick boundary configurations which

reduce their potential energy for a fixed volume. For static solutions, this implies that the

area of the fluid surface is minimized. For stationary solutions, the potential energy not

only has a surface tension term but also a centrifugal contribution. In ref. [28] it was shown

that this variational principle still holds for relativistic fluids and that the minimization

problem is equivalent to maximize the plasma entropy while keeping its energy and angular

momenta fixed. In the gravitational dual system black holes satisfy the variational principle

that their entropy is extremized for fixed energy and angular momenta. In the duality

between SS-AdS black holes and fluid lumps, the entropy, energy and angular momentum

are identified on both sides, while the temperature is mapped according to (2.12). Note that

unexpectedly (because it looks a priori to be a contradiction), the analysis of ref. [28] shows

that maximization of the black hole horizon area is equivalent, for static configurations, to

– 8 –
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minimization of the fluid surface area. The reason for this equivalence can be traced back

to the fact that the black hole horizon is mapped to the entire volume of the plasma and

not to the plasma boundary.

The results quoted so far are independent of the equation of state for the fluid. The

gravitational/hydrodynamic duality where we frame our analysis requires however a par-

ticular equation of state. Indeed, we are interested in the long wavelength limit of a

Scherk-Schwarz compactification of a 4d CFT. The 3d (non-conformal) plasma that results

from the dimensional reduction of the 4d conformal plasma has equation of state defined

by [21]

P =
ρ− 4ρ0

3
, ρ+ P =

4

3
(ρ− ρ0) , s = 4α1/4

(
ρ− ρ0

3

) 3
4

, T =

(
ρ− ρ0

3α

) 1
4

.

(2.13)

with ρ0 and α constants. This equation of state is valid in or out of equilibrium and is

normalized such that the vacuum pressure vanishes. For the SS plasma in equilibrium, it

follows from (2.11) and (2.13) that the pressure and energy density satisfy the relations

P =
ρ∗
3
γ4 − ρ0 , ρ = ρ∗ γ

4 + ρ0 , (2.14)

where ρ∗ is a constant.

2.3 Conserved charges

The constituent fluid of the plasma object has local energy density ρ, pressure P , velocity

uµ, local entropy density s, and local temperature T . These local quantities provide the in-

formation we need to compute the thermodynamic quantities (energy, angular momentum,

entropy, temperature) of the plasma balls and plasma rings.

To define these quantities recall that our fluid lives in a 3d Minkowski background

with stationarity timelike Killing vector ξ = ∂t and spacelike Killing vector χ = ∂φ. We

can then foliate the spacetime into constant t hypersufaces Σt and ξµ is their unit normal

vector. Then, given any Killing vector ψµ, one can define the associated conserved charges

Q[ψ] =
∫
Σt
dV Tµνξ

µψν , where dV is the induced volume measure on Σt. The fluid velocity

is given by (2.10), i.e., uµ = γ
(
δµt + Ωδµφ

)
with γ =

(
1 − r2 Ω2

)−1/2
. The energy and

angular momentum of the plasma associated, respectively, with the Killing vectors ξ and

χ are then

E =

∫

V
dV
[
(ρ+ P )(ξ · u)2 + (ξ · ξ)P

]
− σ

∫

Σt

dV ξµξνhµν |∂f |δ(f) ,

J =

∫

V
dV r2 Ωγ2 (ρ+ P ) − σ

∫

Σt

dV hµνξ
µχν |∂f |δ(f) . (2.15)

Note that for axisymmetric solutions (plasma balls and plasma rings) the boundary term

in J proportional to σ vanishes. It is however present for non-axisymmetric solutions where

χ·n 6= 0 (i.e., when the fluid boundary is not invariant under the action of χ) [28]. The total

entropy of the fluid is the conserved charge associated to the entropy density current suµ,

S = −
∫

V
dV (χ · u)s =

∫

V
dV γs . (2.16)
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3 Equilibrium solutions: rigidly rotating plasma balls and rings

There are three families of axisymmetric rigidly rotating equilibrium configurations in a

3d Minkowski background: plasma balls, plasma rings and plasma tubes. The later were

already analyzed in a previous paper and do not interest us here [28]. The plasma balls

and rings were discussed in detail in [21]. Because we will later study the stability of these

solutions we review were their properties, following closely [21].

Consider plasma configurations in a d = 3 Minkowski background parametrized by

coordinates (t, r, φ). The axisymmetry requirement demands that the boundaries of the

plasma depend only on r. Each boundary is thus defined by the condition (j specifies a

particular boundary in the case where more than one is present)

f(r) = r −Rj = 0 , (3.1)

and has unit normal nµ =
∂µf
|∂f | = δµr. Its extrinsic curvature K = h ν

µ ∇νn
µ is K = 1

Rj
.

Following [21], it is convenient to frame our discussion in terms of the dimension-

less variables,

Ω̃ =
σΩ

ρ0
, r̃ =

ρ0r

σ
, v = Ωr = Ω̃r̃ , (3.2)

and also to use dimensionless thermodynamic quantities,

Ẽ =
ρ0E

πσ2
, J̃ =

ρ2
0J

πσ3
, S̃ =

ρ
5/4
0 S

πα1/4σ2
, T̃ = T

(
α

ρ0

)1/4

. (3.3)

We now consider the properties of plasma balls and rings.

3.1 Plasma balls

Plasma balls are characterized by having a single axisymmetric outer surface at r = Ro

and by P> = 0. Using equation of state (2.13), the Young-Laplace boundary condi-

tion (2.7) reads

ρ(Ro) = 4ρ0 +
3σ

Ro
. (3.4)

Plasma balls in equilibrium must satisfy the equation of state (2.14) and obey the boundary

condition (3.4). This implies that

ρ(v) − ρ0

3ρ0

(
1 − v2

)2
=

(
1 +

Ω̃

vo

)
(
1 − v2

o

)2 ≡ g+(vo) . (3.5)

The range of v is [0, 1] and ρ(v)−ρ0 is always positive for the plasma ball. This is in agree-

ment with the requirement that the local temperature defined in (2.13) must be positive.

After using the equation of state (2.13) and (3.5) we get for the local plasma temperature,

T = γ

(
ρ0g+(vo)

α

)1/4

. (3.6)

For later use note that the constant ρ∗ introduced in (2.14) is related to ρ0 by

ρ∗ = 3ρ0g+(vo) . (3.7)
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This relation follows from replacing (2.14) in the Young-Laplace equation.

Use of (3.5) and (2.13) in (2.15)–(3.3) yields for the dimensionless energy, angular

momentum and entropy of the plasma ball,

Ẽ =
4v2

o − v4
o + 5Ω̃vo − Ω̃v3

o

Ω̃2
, J̃ =

2v4
o + 2Ω̃v3

o

Ω̃3
, S̃ =

4v2
o

Ω̃2

√
1 − v2

o

(
1 +

Ω̃

vo

)3/4

,

(3.8)

while the dimensionless temperature and dimensionless angular velocity of the plasma

balls are

T̃ =

(
∂Ẽ

∂S̃

)

eJ

= [g+(vo)]
1/4, Ω̃ =

(
∂Ẽ

∂J̃

)

eS

. (3.9)

Note that the plasma ball temperature is the redshifted local temperature, T = T /γ,
in agreement with the discussion associated with (2.11). The plasma angular velocity is

naturally the same as the fluid one with no associated Lorentz factor.

3.2 Plasma rings

These have an axisymmetric inner surface at r = Ri (where P< = 0), in addition to the

outer surface at r = Ro (where P> = 0). Using equation of state (2.13), the Young-Laplace

equation yields the pair of boundary conditions,

ρ(Ro) = 4ρ0 +
3σ

Ro
, ρ(Ri) = 4ρ0 −

3σ

Ri
. (3.10)

Plasma rings in equilibrium must also satisfy the equation of state (2.14) and obey the

boundary conditions (3.10). This means that rings must satisfy the pair of equations

ρ(v) − ρ0

3ρ0

(
1 − v2

)2
=

(
1 +

Ω̃

vo

)
(
1 − v2

o

)2 ≡ g+(vo)

=

(
1 − Ω̃

vi

)
(
1 − v2

i

)2 ≡ g−(vi) . (3.11)

Note that ρ(v) − ρ0, and thus the local temperature are non-negative as long as vi ≥ Ω̃.

This system can be satisfied only when

g+(vo) = g−(vi) . (3.12)

This condition constrains the three variables vo, vi and Ω̃ as, e.g., vi = vi(vo, Ω̃). An

inspection of g+(vo) = g−(vi) concludes that there is a minimum vo, call it v∗o , above

which (3.12) is valid [21]. So, plasma rings exist only for vo ≥ v∗o . In fact there are two

families of black rings. One is called the fat plasma ring and exists for Ω̃ ≤ vi ≤ v∗i (where

v∗i < v∗o is such that the derivative of g−(vi) vanishes), while the second, dubbed as thin

plasma ring, exists for v∗i ≤ vi ≤ 1. At vi = v∗i the two families meet at a regular solution.

Use of (2.13) and (3.12) yields for the local plasma temperature

T = γ

(
ρ0g+(vo)

α

)1/4

= γ

(
ρ0g−(vi)

α

)1/4

. (3.13)
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Finally note that ρ∗ defined in (2.14) is related to ρ0 by ρ∗ = 3ρ0g+(vo) = 3ρ0g−(vi).

Using (3.11) and (2.13) in (2.15)–(3.3) yields for the dimensionless energy, angular

momentum and entropy

Ẽ =
4(v2

o − v2
i ) − (v4

o − v4
i ) + 5Ω̃(vo + vi) − Ω̃(v3

o + v3
i )

Ω̃2
,

J̃ =
2(v4

o − v4
i ) + 2Ω̃(v3

o + v3
i )

Ω̃3
,

S̃ =
4

Ω̃2


v2

o

√
1 − v2

o

(
1 +

Ω̃

vo

)3/4

− v2
i

√
1 − v2

i

(
1 − Ω̃

vi

)3/4

 , (3.14)

while the dimensionless temperature and dimensionless angular velocity of the plasma

rings are

T̃ =

(
∂Ẽ

∂S̃

)

eJ

= [g+(vo)]
1/4 = [g−(vi)]

1/4, Ω̃ =

(
∂Ẽ

∂J̃

)

eS

. (3.15)

Note that to determine the plasma ring family of solutions, the constraint (3.12) must

be imposed. The different equilibrium configurations are best understood by looking at a

phase diagram of solutions shown in later sections.

3.3 The hydrodynamic regime

Relativistic hydrodynamics provides a good effective description of the deconfined plasma

phase of N = 4 Yang Mills theory compactified down to d = 3 on a Scherk-Schwarz

circle only if certain conditions are satisfied [21]. First, hydrodynamics is by definition

valid when the thermodynamic quantities of the fluid vary slowly over the mean free path

ℓmfp of the fluid. In our case ℓmfp ∼ Tc ∼ ρ0

σ . A good estimate for the validity regime

is obtained when the maximum fractional rate of change of the fluid local temperature,
δT
T

∣∣
max

∼ ∂r ln γ
∣∣
max

(recall that T = Tγ) is much smaller than ℓmfp. This occurs for
eΩvo

1−v2
o
≪ 1. This condition is satisfied by a wide range of plasma balls and rings as long as

we are away from extremality. Second, the analysis done so far and onwards assumes that

surface tension is constant, σ = σ(Tc), when in fact it is a function of the fluid temperature

at the surface. This assumption is valid when T /Tc ∼ 1 at the boundary surfaces. This is

the case for a long range of energies and angular momentum as long as we do not approach

too much the extremal configurations. Finally, the boundary of the plasma is treated as a

delta-like surface when in fact it has a thickness of order T−1
c . So the analysis is valid when

the boundary radius is everywhere large when compared with T−1
c , {Ro, Ri, Ro−Ri} ≫ σ

ρ0
.

This is the case if the plasma energy is large and again if we are away from the extremal

configurations [21].

4 Stability analysis of plasma balls and rings.

In this section we want to consider a rigidly rotating plasma ball in d = 3 and address its

stability when perturbed. The dynamics of the perturbations is dictated by the hydrody-
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namic equations, subject to appropriate boundary conditions. In this section we restore

light velocity factors to ease comparison between relativistic and classical results.

4.1 Perturbations of the equilibrium solutions: inviscid relativistic case

Perturbations take the plasma away from thermal equilibrium and therefore viscosity and

diffusion effects start to contribute. The energy-momentum tensor of the fluid includes

not only the perfect fluid and the boundary surface tension terms (2.1), but also a dis-

sipative contribution (2.2). For now, we neglect the dissipation contribution to the fluid

stress tensor.

Consider then a generic equilibrium solution described by velocity uµ
(0) =

γ
(
δµt + Ωδµφ

)
(with γ =

(
1 − r2 Ω2/c2

)−1/2
), pressure and density functions as given

by (2.14), which we label with the subscript (0), standing for unperturbed quantities.

Now, suppose the system acted upon by a perturbation with the generic form

P = P(0) + δP , δP (t, r, φ) = ǫγ4P(r)e(ω−imΩ)t+imφ , (4.1)

ρ = ρ(0) + δρ , ρ(0) =
3

c2
P(0) + 4ρ0 , δρ(t, r, φ) =

3

c2
δP (t, r, φ) ,

uµ = uµ
(0) + δuµ , δuµ(t, r, φ) = ǫ

(
Ut(r)δ

µt + γ−3 Ur(r)δ
µr +

Uφ(r)

r
δµφ

)
e(ω−imΩ)t+imφ ,

where we used the equation of state (2.13) valid also out of equilibrium and we denote

the perturbation of a quantity Q as δQ. Positive real part of ω signals an instability.

After eliminating the 0th order terms using the unperturbed hydrodynamic equations, the

continuity and the Navier-Stokes equations yield, up to first order in the perturbation,

c2uµ
(0)

∇µδρ+ c2δuµ∇µρ(0) + (ρ(0)c
2 + P(0))∇µδu

µ + (c2δρ+ δP )∇µu
µ
(0)

= 0 ,

(ρ(0)c
2 + P(0))

(
δuµ∇µu

ν
(0) + uµ

(0)∇µδu
ν
)

+ (c2δρ+ δP )uµ
(0)∇µu

ν
(0)

+
(
gµν + uµ

(0)u
ν
(0)

)
∇µδP +

(
δuνuµ

(0) + uν
(0)δu

µ
)
∇µP(0) = 0 . (4.2)

which reads

0 =
3γ rω
4ρ∗
3 c2

P + γ−3 d

dr
(r Ur) + r(ω − imΩ)Ut + imUφ , (4.3)

0 =
iγ Ω
4ρ∗
3 c2

(iωΩr2 −mc2γ−2)P − 2Ω2rγ−1Ur − c2ω Ut , (4.4)

0 =
γ2

4ρ∗
3

P ′ + ωUr − 2γ3ΩUφ , (4.5)

0 =
iγ

4ρ∗
3 c2

(
iωΩr2 −mc2γ−2

)
P − 2Ωrγ−1Ur − ω r Uφ , (4.6)

where P ′ ≡ dP
dr . Multiplying (4.6) by Ω and subtracting (4.4) it follows that Ut = rΩ

c2
Uφ,

which satisfies the requirement that uµu
µ = −c2 up to order ǫ. These equations can be
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used to get a second order ODE for P, and another equation defining Ur in terms of P and

its derivative. The later is

Ur(r) =
−2iΩ

[
c2m− r2Ω(iω +mΩ)

]
γ2P(r) − c2ωrP ′(r)

4ρ∗
3 r [−ω2r2Ω2 + c2(ω2 + 4Ω2)]

, (4.7)

while the second order ODE for P is

0 = − r2 c6γ−4
(
c2 ω2γ−2 + 4c2Ω2

)
P ′′ − rc6γ−4

(
ω2(c2 + Ω2 r2) + 4c2Ω2

)
P ′

+

[
c8m2(ω2 + 4Ω2) − ω2 r8Ω6(ω − imΩ)2

+c4r4Ω2
(
6iω3mΩ − 7ω4 + 2ω2Ω2(3m2 − 14) + 24iω mΩ4

)

−c2r6Ω4
(
6iω3mΩ − 5ω4 + 4ω2(m2 − 2)Ω2 + 12iω mΩ3 + 4m2Ω4

)

+c6r2
(
3ω4 − 2iω3 mΩ − 4ω2(m2 − 5)Ω2 − 12iω mΩ3 + 4(8 − 3m2)Ω4

) ]
P (4.8)

The perturbed continuity and Navier-Stokes equations must be supplemented by appro-

priate boundary conditions. For that, let us write a general boundary disturbance as

r = R(t, φ) , with R(t, φ) = Rj

(
1 + ǫ χ e(ω−imΩ)t+imφ

)
, ǫ≪ 1 , (4.9)

where Rj is the unperturbed radius of the boundary. For the plasma ball one has Rj ≡ Ro,

while for the plasma ring we have both the inner and outer boundaries: Rj ≡ Ri and

Rj ≡ Ro. For plasma rings, this reduces the possible set of perturbations to the subsector

with similar temporal and angular deformations in both boundaries.

The first boundary condition is a kinematic condition requiring that the normal com-

ponent of the fluid velocity on the boundary satisfies the perturbed version of (2.8),

uµ
(0)
δnµ + δuµn

(0)
µ = 0, where δnµ ≡ nµ

∣∣
R(t,φ)

− n
(0)
µ and the unperturbed normal is

n
(0)
µ ≡ nµ

∣∣
Ro,i

= δr
µ. This ensures that the fluid is confined inside the boundary and

is also a consistency relation between the boundary and the velocity perturbation. To

leading order this boundary condition reads,

BC I : Ur

∣∣
Ro,i

≃ ωγ4
o,iRo,iχo,i . (4.10)

The second boundary condition is a balance on the normal stress at the boundary. This

means that the pressure perturbation must also satisfy the perturbed version of the Young-

Laplace equation (2.7), namely: δP< − δP> = σδK. Since we have vacuum in the exterior

of the plasma configuration this reads

BC II :
(
P

(0)
≶

∣∣
R(t,φ)

+ δP
∣∣
Ro,i

)
− P

(0)
≶

∣∣
Ro,i

= ±σ
(
K
∣∣
R(t,φ)

−K
∣∣
Ro,i

)
,

where the choices {<,+, o} apply to the outer boundary and {>,−, i} to the inner bound-

ary, if present. The subscript r = R(t, φ) means that we evaluate the expression at the

perturbed boundary r = R(t, φ) defined in (4.9) and the subscript r = Ro,i means evalua-

tion at the unperturbed boundary r = Ro,i. P
(0)
≶ is computed using (2.14). The extrinsic

curvature K = h ν
µ ∇νn

µ is obtained using the unit normal of (4.9),

nµ = |δf |−1
(
−R′

tδ
t
µ + δ r

µ −R′
φδ

φ
µ

)
, |δf | =

(
1 − 1

c2
R′ 2

t +
1

r2
R′ 2

φ

) 1
2

. (4.11)
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The Young-Laplace equation (4.10) then yields to leading order in ǫ

P
∣∣
Ro,i

≃ σ

Ro,i
χo,iγ

−4
o,i

[
±
(

1

c2
(ω − imΩ)2R2

o,i +m2 − 1

)
− Σ γ6

o,i

]
, (4.12)

where ± applies, respectively, to the outer and inner boundary and γo,i ≡ γ
∣∣
Ro,i

. Here,

we have defined the rotational Bond parameter Σ which plays an important role in this

problem. It measures the competition between centrifugal and surface tension effects and

is defined by,

Σ ≡ 4ρ∗
3
R3

o,i

Ω2

σ
. (4.13)

4.2 Plasma balls: instability and critical rotation in the inviscid case

We now particularize the above framework for plasma balls. We can combine boundary

conditions (4.12) and (4.10) in a single condition,

Ur(Ro) =
ωR2

o γ
8
o

σ
(
m2 − 1 − Σγ6

o + R2
o

c2 (ω − imΩ)2
) P(Ro) . (4.14)

To summarize, (4.7) and (4.14) give us a condition on P. Together with regularity condi-

tions at the origin, eq. (4.8) is then an eigenvalue problem for ω.

Although we will present our numerical results in full generality, it is insightful to

compare them with the small rotation regime where an analytical treatment is possible. In

this small velocity regime, ΩRo ≪ c, (4.8), (4.7) and (4.14) reduce respectively to

1

r

d

dr

(
rP ′
)
− m2

r2
P = 0 , (4.15)

Ur(r) = −2imΩP(r) + ωrP ′(r)
4ρ∗
3 r (ω2 + 4Ω2)

, (4.16)

Ur(Ro) =
ωR2

o

σ (m2 − 1 − Σ)
P(Ro) . (4.17)

If we define

Σω ≡ 4ρ∗
3
R3

o ω
2 , (4.18)

we can express the analytical solution to the system (4.15)–(4.17) as

√
Σω = i

√
Σ ±

√
(m− 1) (Σ −m(m+ 1)) . (4.19)

Thus, for Σ > m(m+1) and m ≥ 2, the system is unstable. This is one of our main results:

in the simplest m = 2 case, plasma balls become unstable against 2-lobed or peanut-

like deformations when the rotation reaches a critical value Ωcrit. For higher rotation

they become also unstable against m-lobed deformations, with m > 2. Notice that in

the non-relativistic regime the density is approximately a constant and equal to 4ρ∗/3

(see footnote 5). Thus, our result (4.19) is precisely the well-known result for inviscid,

incompressible fluids of density ρ = 4ρ∗/3 [31].
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Figure 3. Left Panel: Details of instability for the m = 2 mode. We are fixing Σ = 4

3
× 109,

σ = 10−7. Classically, i.e., for small rotation rates, the quantity Σω is a constant, and both the

real and imaginary part of the characteristic frequency ω lie on the straight line, i.e., directly

proportional to Ω. The stability region lies in a range of very small ΩRo, not visible in the figure.

Right Panel: Details of the instability for the m = 2 mode, this time with parameters chosen such

that the instability sets in at large ΩRo. In this case, the threshold is around ΩRo/c ∼ 0.402, the

parameters are 4ρ∗Ro

3σ
= 24. Classically, the threshold would be at at ΩRo/c = 0.5.

Our numerical results for the relativistic system (4.8), (4.7) and (4.14), are depicted

in figure 3 for the m = 2 case. For small rotation rates, they are in perfect agreement with

the non-relativistic limit (4.19). We find a (in any case small) deviation from the classical

prediction only when ΩRo/c approaches unity. In the right panel, we show a case where

the threshold rotation frequency at which an instability sets in is rather large. For these

values we get a threshold of approximately ΩRo/c ∼ 0.402, still in good agreement with

the classical result ΩRo/c = 0.5, as given by (4.19) for these values (4ρ∗Ro

3σ = 24). We were

not able to find unstable modes for m = 1, in agreement with the classical result (4.19) for

small rotations.

The critical rotation frequency RoΩcrit, for which the configuration is marginally stable

is shown in figure 4. For a given ρ∗Ro/σ and rotations larger than RoΩcrit, the system is

unstable to two lobed perturbations (m = 2). We find that for moderately large ρ∗Ro/σ ≥
50, the classical formula (4.19) holds.

At this point we should check if and when the lengthscale of the instability falls within

the hydrodynamic limit (discussed in the end of section 3). The thermodynamic quantities

of the fluid must vary slowly over the mean free path of our system, ℓmfp ∼ Tc ∼ ρ0

σ .

The lenghscale of the instability is the ratio of its wavelength to the tube’s radius and is

of order (ωR2
o)

−1. Therefore the hydrodynamic description is valid for instabilities that

satisfy ωRo ≫ σ
ρ0c2Ro

. A simple inspection of figure 4 allows one to conclude that the

conditions for a hydrodynamic description are satisfied in the non-relativistic limit where
ρ∗c2Ro

σ & 50. It is certainly satisfied for very large values of ρ0c2Ro

σ . In addition, the initially

unperturbed plasma ball must of course satisfy the conditions discussed already in the end

of section 3.
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Figure 4. Critical rotation frequency ΩRo at which instability sets in, as a function of the dimen-

sionless quantity 4ρ∗Ro

3σ
. For large 4ρ∗Ro

3σ
, the classical prediction (4.19) applies.

4.3 Viscosity: instability and critical rotation in the non-relativistic case

Although we start with a plasma ball in thermodynamic equilibrium, viscosity contributions

have to be taken into account in the perturbed configuration. In fact even the most

“perfect” known fluids have a certain non-vanishing viscosity [32], and this is certainly the

case for the SS plasma. It turns out that, for the problem at hand, even a vanishingly

small viscosity has a dramatic effect on the critical rotation at which instability sets in.

In fact, viscosity introduces a singular-limit, where the “limit of theory is not the theory

of the limit” (see [31, 33] for the classical analysis). Thus our relativistic analysis of the

previous subsection must address also viscosity effects.

Fortunately, from the full relativistic analysis of the previous section, we know that

we can to a good approximation address the present problem in the small rotation regime.

To define precisely this regime, recall that in section 3.3 we concluded that hydrodynam-

ics provides a good effective description of the deconfined plasma phase immersed in the

vacuum confined phase when the plasma satisfies the condition

σ

ρ0c2Ro
≪ 1 . (4.20)

Moreover, in the previous subsection we found that the full (numerical) results for the

marginally stable mode (where the m-lobed instability set in) agree very well with the

(analytical) non-relativistic results obtained for

ΩRo

c
≪ 1 . (4.21)

We are therefore justified to use the small velocity regime: in this case not only the non-

relativistic results reveal very good agreement with the full relativist analysis but also this

is the relevant regime where the hydrodynamic analysis provides valuable information for

the dual gravitational system.

The non-relativistic limit of the hydrodynamic equations presented in subsection 2.1

was studied in great detail in [34]. There it is found that the continuity and Navier-Stokes
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equations reduce, respectively, to

∇ · v = 0 ,

∂tv + (v · ∇)v = − 3

4ρ∗
∇P + ν∇2v , ν ≡ 3η

4ρ∗
, (4.22)

where one uses u → (1,v), and ∇i (i = r, φ) represents the covariant derivative with

respect to the purely spatial metric ηij. So in the non-relativistic limit, the hydrodynamic

system reduces to the continuity and Navier-Stokes equations for an incompressible fluid

with constant density ρ
∣∣
γ=1

(so the continuity equation simply states that the velocity field

is a solenoid vector: its spatial divergence vanishes), and with kinematical viscosity ν.5

At this point we can now perturb (4.22) and simply follow the classical analysis of the

m-lobed instability of a fluid ball done e.g., in [31]. Using the same non-relativistic version

of the perturbations used in (4.2), we get,

d

dr
(r Ur) + imUφ = 0 ,

ωUr − 2ΩUφ +
3

4ρ∗
P ′ = ν

(
U ′′

r +
1

r
U ′

r −
(m2 + 1)

r2
Ur −

2im

r2
Uφ

)
,

3

4ρ∗

im

r
P + 2ΩUr + ω Uφ = ν

(
U ′′

φ +
1

r
U ′

φ − (m2 + 1)

r2
Uφ +

2im

r2
Ur

)
. (4.23)

These equations must now be supplemented by the appropriate boundary conditions. The

constraint (2.8) is still valid as well as the associated boundary condition (4.10). The

Young-Laplace equation gets now a contribution from the viscous term, and so the normal

stress-balance at the boundary, (4.12), is modified to

P
∣∣
Ro

≃ σ

Ro
χo

[(
m2 − 1

)
− 4ρ∗

3

Ω2R3
o

σ

]
+ 2ν U ′

r . (4.24)

Finally, we must also require that the tangential stresses vanish at the boundary (this

amounts to require that the fluid is shearless at the boundary), which yields the extra

boundary condition

R2
oU

′
φ −RoUφ − imUr = 0 . (4.25)

We can use the first relation in (4.23) to express Uφ in terms of Ur and its derivative and

then use the remaining equations to solve for Ur and P. One gets a fourth-order differential

equation. In any case, the procedure is trivial and one ends up with the following eigenvalue

equation [31]

β4 + 2β2

(
(m2 − 1) −m(m− 1)2

β2

Φ
− iRe

)
+mRe2

(
m2 − 1

Σ
− 1

)
= 0 , (4.26)

5It follows from (3.5) and (3.7) that in the non-relativistic limit one has ρ ∼ 4
3
ρ∗ ∼ 4ρ0. Moreover, in

this limit one finds that a possible contribution coming from the bulk viscosity in the Navier-Stokes vanishes

because it is proportional to ∇ · v, and the absence of the particle number conservation and the use of the

Landau frame [10] allow to avoid the use of thermal conductivity [34].
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Figure 5. Instability as a function of the inverse of the Bond number, Σ−1 for different values

of the Reynolds number Re = 10, 100 and for m = 2. We also show the inviscid values. Notice

that the critical Bond number is not m(m+ 1) when viscosity is present, even in the limit where it

vanishes. In the general viscous case, the instability is limited by the critical point Σc = m2 − 1.

where we defined

Re ≡ R2
oΩ

ν
, β2 ≡ ω

Ω
Re , Φ ≡ β2 + 2m− 2β

Im−1(β) + Im+1(β)

2Im(β)
. (4.27)

Here Im(β) is a modified Bessel function and Re is the Reynolds number. Solving for this

eigenvalue equation, we get the behavior depicted in figure 5. What the figure shows, and

can be proven be proven analytically [31], is that the limit of small viscosity, Re→ ∞, does

not yield the zero viscosity result. This is quite an astonishing result: the critical Bond

number Σc when viscosity is introduced is at Σc = m2 − 1 that is always smaller than the

critical value for the instability found in the last subsection, namely, m(m+ 1). Therefore,

the configuration is unstable at lower rotation frequencies, when viscosity is accounted for.

This result holds for both large and small Reynolds number.

In figure 6 we represent the plasma rings, and stable and unstable plasma balls in two

distinct phase diagrams at fixed energy,6 and it summarizes one of our main results.

5 Bifurcation to two-lobed configurations: rotating plasma peanuts

In the previous section we found that plasma balls are marginally stable at Σc = m2 −
1, when perturbed by an azimuthal mode m. Such a marginal mode usually signals a

branching off to another family of solutions, and here it is no exception. This new family

is a non-axisymmetric m−lobed configuration: a rotating plasma peanut. In this section

we want to verify the existence of this branch of solutions and study some of its main

properties. A detailed numerical study of the full branch of this new plasma phase is

6In these diagrams we choose to fix the dimensionless energy at the value eE = 40 to make a connection

with the value chosen in [21], where plasma balls and rings where first discussed. This value of the energy

corresponds to ρ∗c2Ro

σ
∼ 14. In this case the non-relativistic analysis for the marginal point mismatches

the accurate full relativistic result by a factor of approximately 20%.
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Figure 6. (a) Phase diagram with the entropy of plasma balls and plasma rings Ẽ as a function

of angular momentum J̃ , at fixed energy Ẽ = 40 in d = 3 [21]. For this value of the energy, one

has v∗o ≃ 0.7248999 and v∗
i
≃ 0.5009615. Plasma rings exist only for vo ≥ v∗o . The fat plasma

rings exist for Ω̃(vo = 1) ≤ vi ≤ v∗
i

(with Ω̃(vo = 1) = 0.333333), while the thin plasma rings exist

for v∗
i
≤ vi ≤ 1. At vi = v∗

i
the two families meet in a regular solution. Hydrodynamics does

not provide a good dual description for configurations near extremality (T = 0) where the entropy

also vanishes. We find that plasma balls become unstable above the critical rotation J̃c ≃ 21.8127,

and the dashed line represents the unstable plasma balls. (b) Similar to Fig a), but this time we

represent the phase diagram with the angular velocity Ω̃ of plasma balls and plasma rings as a

function of angular momentum J̃ , at fixed energy, Ẽ = 40.

outside of the main scope of this work. Here, we will address the most important region,

namely we investigate how this family looks close to the bifurcation point Σ = Σc in the

phase diagram of stationary solutions. Consistent with the analysis of previous sections we

restrict our analysis to the hydrodynamic and small rotation regime, eqs. (4.20) and (4.21),

where the hydrodynamic analysis provides valuable information for the dual gravitational

system. We can then follow closely the analysis done by Benner, Basaran and Scriven [33].

In the following we obtain the new branch of rotating plasma peanuts that emerges from

the plasma ball bifurcation point.

The energy, angular momentum and entropy of the plasma lump are given by (2.15)

and (2.16). In the regime (4.20) and (4.21) (see also footnote 5 and note that ρc2 +

P ∼ 4ρ0c
2) and in the close vicinity of the plasma ball bifurcation point the associated

dimensionless charges read,

Ẽ =
ρ0c

2

πσ2

∫

V
T tt ≈ 4

π

∫ π

0
dφ R̃2(ǫ, φ) ,

S̃ =
(ρ0c

2)5/4

πα1/4σ2

∫

V
γs ≈ 4

π

∫ π

0
dφ R̃2(ǫ, φ) ,

J̃ =
ρ2
0c

5

πσ3

∫

V
r2T tφ ≈ 2

π

∫ π

0
dφ Ω̃(ǫ) R̃2(ǫ, φ) . (5.1)

In these relations we are looking for the unknown family of lobed solutions by expanding

around the known plasma ball at the marginal stability point Σc = m2 − 1. We take ǫ to

be the parameter that measures the deviation from the rotating axisymmetric plasma ball

with dimensionless radius R̃o, and R̃(ǫ, φ) describes the non-axisymmetric boundary of the
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unknown plasma peanut (note that in the vicinity of the bifurcation point the axisymmetric

deviation is really small and the perturbative approach is appropriate). We also assume

that there is mirror symmetry around the φ = 0, π axis.

In a perturbative analysis, known as power series method [33], we now take the bound-

ary radius and Bond parameter to be described by the expansion around the marginally

stable plasma ball,

R̃(ǫ, φ) = R̃0

(
1 + ǫf (1)(φ) +

ǫ2

2
f (2)(φ)

)
+ O(ǫ3) ,

Σ(ǫ) = Σc + ǫΣ(1) +
ǫ2

2
Σ(2) + O(ǫ3) . (5.2)

We also introduce the dimensionless pressure jump Π at the axis of rotation (see (2.14)),

and its expansion,

Π ≡ Roc
2

σ

(
1

3
ρ∗ − ρ0

)
, Π(ǫ) = Πc + ǫΠ(1) +

ǫ2

2
Π(2) + O

(
ǫ3
)
. (5.3)

The perturbed quantities characterize the m-lobed branch. We want to find a family of

configurations that have fixed energy. Perturbations have to solve a total of four equations,

namely: the Young-Laplace equation, the energy constraint (we want to represent the

branch of solutions in a phase diagram at fixed energy), the orthogonality equations and a

equation defining the amplitude parameter ǫ.

The perturbed nth order Young-Laplace equation, δP< = σδK, yields

f
(n)
φφ + (1 + Σc) f

(n) + Π(n) = S
(n)
Y L , (5.4)

where fφ ≡ ∂φf and the relevant source terms Sn
Y L are

S
(0)
Y L = 0 , S

(1)
Y L = 0 , S

(2)
Y L = (2 − Σc)

(
f (1)

)2
− 2Σ(1)f (1) +

(
f

(1)
φ

)2
+ 4f (1)f

(1)
φφ ,

S
(3)
Y L = −3Σ(2)f (1) + 3 (2 − Σc) f

(1)f (2) + 3
(
f

(1)
φ f

(2)
φ − 6(f (1))2f

(1)
φφ

)

+6
(
f (1)f

(2)
φφ + f (2)f

(1)
φφ

)
+ 9f

(1)
φφ (f

(1)
φ )2 − 6(f

(1)
φ )3 − 9f (1)(f

(1)
φ )2 . (5.5)

The condition that fixes the energy follows from perturbation of the first relation in (5.1),

δẼ = 0, which yields ∫ π

0
dφ f (n) = S

(n)
E , (5.6)

with source terms

S
(0)
E = 0 , S

(1)
E = 0 , S

(2)
E = −

∫ π

0
dφ
(
f (1)

)2
, S

(3)
E = 3

∫ π

0
dφ f (1)f (2) . (5.7)

For n ≥ 2 the problem is inhomogeneous and the solution must satisfy an orthogonal-

ity condition,7 ∫ π

0
dφ f (1)S

(n)
Y L + 2Π(1)S

(n)
E = 0 . (5.8)

7To get (5.8) start with the Young-Laplace equation (5.4). Multiply it by f (1)(φ); integrate over φ; do

a double integration by parts (use the symmetry condition f (n)(0) = f (n)(π) and the n = 1 Young-Laplace

to simplify some of the terms); and finally make use of the energy conservation (5.6).
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Finally, the amplitude parameter ǫ is defined as the integral-weighted difference between

plasma shapes,

ǫ ≡
∫ π

0
dφ f (1)

(
R̃− R̃o

)
→

∫ π

0
dφ f (1)f (n) = δ1n . (5.9)

The solution of (5.4)-(5.9), up to second order in the perturbation, is

f (1)(φ) =

√
2

π
cos(mφ) ,

f (2)(φ) =
3

π

(
1 − 1

m2

)
+

2

π

(
1

m2
− 1

)
cos2(mφ) +

2

π

(
2

m2
− 3

)
sin2(mφ) ,

Σ = (m2 − 1) +
ǫ2

2

3

2π

(m4 − 1)(1 −m2)

m2
,

Π = 1 − m2 − 1

2
+
ǫ2

2

3

π
(1 −m2) . (5.10)

These perturbations keep the energy of the stationary solutions fixed and equal to Ẽ = 4R̃2
o.

Moreover, use of these relations in the definition (4.13) of the Bond parameter and in (5.1)

yields the expansion of the other thermodynamic quantities around the bifurcation point,

Ω̃ = R̃−3/2
o

√
m2 − 1

(
1

2
− ǫ2

3(m4 − 1)

16m2π

)
+ O

(
ǫ3
)
,

J̃ = R̃5/2
o

√
(m2 − 1)

(
1 + ǫ2

3 + 32m2 − 3m4

8πm2

)
+ O

(
ǫ3
)
,

S̃ = 4R̃2
o + O

(
ǫ3
)
. (5.11)

This expansion allows to represent the new branch of non-axisymmetric plasma peanuts in

a phase diagram of stationary solutions at fixed energy. Since rotation is the mechanism

responsible for the instability that signals the bifurcation to the new phase, it is appropriate

to represent the 2-lobed plasma lump in a phase diagram that represents the angular

momentum J̃ against its conjugated chemical potential Ω̃. To check the accuracy of our

approximations we first observe that at zero order, we have J̃ (0) = 2R̃4
oΩ̃ = 2

16 Ẽ
2Ω̃. For

the slope of the plasma ball at the bifurcation point we thus get deΩ(0)

d eJ(0)
= 1

200 for Ẽ = 40.

This value is in reasonable agreement with the exact relativistic value for the Ω̃ − J̃ slope

at the bifurcation, obtained from (3.8) (for Ẽ = 40 we get numerically deΩ(0)

d eJ(0)
∼ 1.2

200 ; as

explained in footnote 6 the disagreement is due to the fact that the system with E = 40

is not exactly within the classical regime). We can now use the next-to-leading order

non-vanishing contribution to get the desired slope for the m-lobed branch, yielding

(
dΩ̃

dJ̃

)(2)

= − 24(m4 − 1)

3 + 32m2 − 3m4

1

Ẽ2
. (5.12)

For m = 2 this is the slope at which the 2-lobed or plasma peanut branch emerges from

the plasma ball bifurcation point. In the phase diagram Ω̃ − J̃ of stationary solutions at

fixed energy, represented in figure 7, the plasma peanut branch bends down and to the
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Figure 7. Phase diagram Ω̃(J̃) of stationary plasma solutions with fixed energy, Ẽ = 40. At

(J̃c, Ω̃c) ≃ (21.81, 0.157) the plasma ball becomes unstable and bifurcates to a branch of rotating

plasma peanuts. We show this branch in the vicinity of the bifurcation point but it continues for

larger values of J̃ . Note that the bifurcation point for plasma balls is at lower angular velocity and

angular momentum than the merging point between the fat and thin plasma rings, a feature we

verified to be valid independently of the choice for the energy of the system.

right relatively to the plasma ball family. In this diagram we identify the critical unstable

point where bifurcation occurs and we represent by a dashed line the plasma balls rotating

faster than the critical velocity, which are therefore unstable.

This figure summarizes the main result of this section: we have confirmed the existence

of a new phase of non-axisymmetric stationary solutions and we were able to use perturba-

tive methods around the bifurcation point to find what is the direction that the new branch

of solutions takes relatively to the known phases. A full description of the 2-lobed branch

well away from the bifurcation point (where it acquires a well defined peanut shape) would

required a full numerical analysis and we leave it for future work. Note also that keeping

going up along the plasma ball branch this time already in the unstable ball region to

2-lobed perturbations we would find a succession of new bifurcation points to new phases

of solutions representing m-lobed plasma lumps with m > 2. The slope of these branches

is given by (5.12).

Alternatively, we could represent the new phase in the S̃ − J̃ phase diagram. We get

(dS̃/dJ̃)(2) = 0 up to second order terms (this is not a surprise since at the order we work,

the entropy is equal to the energy). Now, in the classical regime, the plasma family also has

zero slope for this quantity so in principle one should go to higher order in ǫ if we wish to

compute accurately the slope of the m−lobed family. In our approximation the bifurcation

point tends to collapse to the static plasma ball point in the S̃ − J̃ diagram where the

slope vanishes. Therefore, at the order we work, the representation in this diagram is not

a good choice.

The current line of research is not exhausted in the present analysis. In future work, it

should be certainly possible to find numerically the full branch of non-axisymmetric plasma

lumps in the phase diagram, and to discuss their stability.
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6 Unstable plasma balls and their dual black holes

In the previous two sections we found that, starting with a static plasma ball, as we

increase its rotation, the axisymmetric rotating plasma ball becomes unstable first to a

2-lobed perturbation and then to m > 2 lobed perturbations. Moreover, the marginal

unstable modes were found to be bifurcation points in the phase diagram of solutions

to a new branch of m-lobed plasma lumps. It is important to emphasize that these new

plasma phases inhabit a region in parameter space where hydrodynamics provides a reliable

holographic description of the dual gravitational system. This dual system was discussed

in the Introduction: in the long wavelength regime, 3d fluid dynamics is an effective theory

describing the Scherk-Schwarz (SS) compactification of a 4d CFT. The latter is dual to

the SS compactification of AdS5 gravity. It then follows that 3d plasma lumps correspond,

in the dual gravity description, to SS AdS5 black objects. The axisymetric plasma balls

and plasma rings correspond, respectively, to rotating black holes and black rings in SS

AdS5 [21].

Since plasma balls are unstable above a critical rotation rate (cf. section 4), the

holographic dual SS AdS5 black holes must also be unstable against m-lobed perturba-

tions. These axisymmetric black holes are expected to bifurcate to a new branch of non-

axisymmetric black hole solutions in accordance with the plasma results. In the simplest

m = 2 case, these are non-axisymmetric solutions that describe a peanut-like rigidly ro-

tating black hole. Such a deformed black hole must necessarily emit all kinds of radiation.

These waves can escape to infinity through the directions parallel to the holographic bound-

ary (where the dual fluid lives). It is then natural to expect that this non-axisymmetric

black hole will decay, probably emitting a good amount of the angular momentum and

multipoles of the system, into an axisymmetric slowly rotating black hole.8 In practice,

this instability provides then a mechanism that constraints the rotation of the black hole:

effectively it introduces an upper bound for the rotation of the SS black hole. Some of

these non-axisymmetric black holes are expected to decay very slowly and to be long-

lived. Indeed it is important to emphasize that hydrodynamics can only provide a good

description of a gravitational system in a regime where the gravitational interaction and

radiation is suppressed. For example, two plasma balls do not interact and their colli-

sion is not accompanied by radiation emission, so they can only describe approximately

two black holes when they are widely separated. Therefore, in the regime where our fluid

description provides a good approximation, we should expect radiation emission to be sup-

pressed in the dual gravitational system. Thus the non-axisymmetric black holes should

indeed be long-lived, leaking very slowly radiation and angular momentum. Finding the

explicit geometry describing such a solution will probably require a full-blown numeri-

cal solution of the field equations. This is thus a valuable example of the power of the

hydrodynamic/gravity duality.

We expect our main conclusions to extend to higher dimensional theories as well. For

any d ≥ 3, d-dimensional fluid dynamics is an effective theory describing the SS compacti-

8We are undoubtedly grateful to Roberto Emparan for fruitful discussions concerning the dual interpre-

tation of the plasma results
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fication of a (d + 1)-dimensional CFT, which is dual to a SS compactification of AdSd+2.

Apart from an expected simplification of the technical analysis in the d = 3 case, there is

clearly no step in our analysis that is valid only for d = 3. Thus, plasma balls and dual

black holes rotating above a critical rate should also be unstable in higher dimensions and

bifurcate to m-lobed plasmas and black holes. But, as we discuss in the sequel, we also

expect some significant differences between the d = 3 and d > 3 cases.

Eventually new features are expected as one climbs the dimensionality ladder. For

instance, new plasma lump configurations appear for d > 3. Indeed, in d > 3 one can have,

besides the configurations discussed here, also pinched plasma balls, non-uniform tubes and

pinched non-uniform tubes [21, 22, 28]. In the dual gravitational system, pinched balls [22]

correspond to pinched black holes [35], and the non-uniform tubes describe non-uniform

black strings with the pinched ones being black strings on the verge of expelling a black

ring [28]. It would be quite interesting to understand the stability properties and phase

diagrams of plasma balls in higher dimensions.

But, the results of the present analysis already allow one to infer important properties

about the stability and existence of new solutions in higher dimensions. Consider hydrody-

namics in a d = 4 Minkowski background (the boundary of SS AdS6 black objects). Take a

static plasma tube with topology D2×R or D2×S1 (it is translationally invariant along the

extra direction which can be or not compact). Such a plasma tube is unstable against the

Rayleigh-Plateau instability when its length is larger than its transverse perimeter [4, 5, 28].

In the dual system, the corresponding black string is Gregory-Laflamme unstable [3], the

holographic dual of the fluid instability. The marginal unstable mode is a bifurcation point

to a new phase of solutions describing non-uniform plasma tubes and black strings. For

details of this instability, see refs. [4, 5, 13, 28, 36]. Now, a 4d static plasma tube is simply a

3d plasma ball trivially extended along the extra direction. Our results then show that a ro-

tating plasma tube, with the rotation axis along the tube direction, should also be unstable,

above a critical rotation rate, to m−lobed perturbations. Moreover, the marginally stable

points are bifurcation points, this time to non-axisymmetric plasma tubes translationally

invariant along the tube direction and whose transverse cross section has a m-lobed shape.

Again, by the hydrodynamic/gravity duality, we expect that rotating black strings will be-

come unstable, not only against the Gregory-Laflamme instability, but also against m-lobed

azimuthal perturbations. And a new branch of non-axisymmetric m-lobed black strings is

expected to branch-off at the unstable threshold point in the phase diagram of solutions.

Other interesting solutions include axisymmetric non-uniform black strings (these bifur-

cate from the Gregory-Laflamme unstable point) and pinched non-uniform black strings

which are also solutions of the gravity theory [28]. Our study then predicts the existence

of non-axisymmetric non-uniform black strings and pinched ones. We emphasize that the

existence of pinched black strings [28] and non-axisymmetric m-lobed black strings would

hardly be anticipated without resorting to the hydrodynamic/gravity duality. Our discus-

sion focused on 4d plasma tubes dual to 6d black strings but again it should extend to

higher dimensions.

These results rely on the hydrodynamic description of a particular gauge/gravity dual-

ity, namely of the Scherk-Schwarz system. Experience with hydrodynamics indicates that
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similar results should be found for other gauge/gravity theories with an effective hydro-

dynamic description and a confinement/deconfinement phase transition. The deconfined

black hole phase of such a general system is still expected to be described at leading order

by a perfect fluid holographic stress tensor, and the interface between the deconfined and

confined phases is again expected to be dictated by a domain wall with a surface tension.

Such a generic dual system will of course have a different equation of state, encoding the

information on the kind of fluid describing the gauge theory. However, our analysis is not

very sensitive to the particular equation of state of the plasma. Hence it could be that our

main results on the stability and bifurcation properties of plasma balls will be common to

generic dualities.

It would also be interesting to investigate the dual of the superradiant instability

on the plasma balls. In general, rotating black holes develop an ergoregion, a region

in spacetime with negative energy states. For spacetimes with ergoregions, one can have

superradiant scattering, whereby a wave (with frequency ω < mΩ, where m is an azimuthal

number and Ω is the horizon velocity) can be amplified, extracting rotational energy from

the hole. In AdS, the superradiantly amplified waves bounce back at infinity and lead

to a superradiant instability [43]. Thus four- [42, 44] and higher dimensional [45, 46]

rotating Kerr-AdS black holes can be unstable. The endpoint of such an instability is

presumably an element of a new branch of stationary black holes, rotating in such a way

as to avoid the superradiant window [42, 45]. Some of the angular momentum of the

black hole is transferred to caged radiation in between the horizon and the AdS wall and

co-rotating with the black hole. It was also argued in [45] that a new branch of non-

axisymmetric black hole solutions could eventually bifurcate from the original Kerr-AdS

black hole at the threshold of the superradiant instability. This superradiant phenomena is

a similar, but not identical, mechanism to the one we explored in this paper (the mechanism

dealt with here is not dependent on superradiant amplification). They may correspond

to different bifurcation branches in a phase diagram of possible solutions. To explore

the eventual dual of the superradiant instability on a plasma ball we should take into

account that experience indicates that an ergoregion instability develops when the rotation

speed at the boundary surface, ΩRo, exceeds the sound speed of the plasma. This then

corresponds to the formation of an acoustic “ergoregion” in the system, and therefore

by a general theorem by Friedman [47], they should be unstable. We should however

keep in mind a possible serious caveat: the dual hydrodynamic description is typically

valid for large AdS black holes (i.e., for those whose horizon is large compared with the

cosmological scale) [21, 30], while the superradiant instability is present only in small AdS

black holes [42, 44]. So it might well be that the fluid description is not able to capture

the dual of the superradiant instability.
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A On the stability of plasma rings

In this appendix we discuss the stability of plasma rings, and we find that plasma rings are

stable against the particular m-lobed deformations that we consider. Plasma rings have an

inner boundary at r = Ri in addition to the outer boundary at r = Ro. The boundary

conditions (4.12) and (4.10) yield the following system for the outer and inner surfaces,

Ur(Ro,i) =
ωR2

o,i γ
8
o,i

σ

[
±
(

1
c2

(ω − imΩ)2R2
o,i +m2 − 1

)
− 4ρ∗

3

Ω2R3
o,i

σ γ6
o,i

] P(Ro,i) . (A.1)

Relations (4.7) and (A.1) provide two conditions on P and constitute again an eigenvalue

problem for ω. The problem depends on two dimensionless quantities: ρ∗Ro

σ and ΩRo. For

ΩRo ≪ c, (4.8) and (4.7) reduce respectively to (4.15) and (4.16), while (A.1) simplifies to

Ur(Ro,i) =
ωR2

o,i

σ

(
± (m2 − 1) − 4ρ∗

3

Ω2R3
o,i

σ

) P(Ro,i) . (A.2)

For black rings some of these quantities are not independent, e.g., we have Ri = Ri(Ro) and

Ω = Ω(Ro, ρ/σ). In section 3 we already discussed these constraints so it is appropriate to

rewrite (4.15), (4.16) and (A.2) in terms of the dimensionless variables (3.2). Defining also

the dimensionless frequency ω̃ = σ
ρ0
ω the system we have to solve is

P(v) = Avm +Bv−m , (A.3)

−Ω̃2 2imΩ̃P(vo) + ω̃voP ′(vo)

4vg+(vo)
(
ω̃2 + 4Ω̃2

) =
ω̃

Ω̃

v2
o[

± (m2 − 1) − 4
eΩ
g+(vo)v3

o

] P(vo) , (A.4)

−Ω̃2 2imΩ̃P(vi) + ω̃viP ′(vi)

4vg−(vi)
(
ω̃2 + 4Ω̃2

) =
ω̃

Ω̃

v2
i[

± (m2 − 1) − 4
eΩ
g−(vi)v3

i

] P(vi) . (A.5)

We have found no unstable mode. One might argue that black rings should be unstable

at least at the point where they cross that plasma ball diagram of figure 7. This does

not necessarily have to be in contradiction with our results first because the boundary

conditions for black rings do not seem to reduce to the boundary conditions for plasma
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balls, even in this limit. Second, the analysis here does not prove that these plasma

rings are stable: they are stable against the particular m-lobed deformations that we

consider (see discussion just after (4.9)). A more general analysis is needed, encompassing

generic perturbations.
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C. Csáki, M. Reece and J. Terning, The AdS/QCD correspondence: still undelivered,

arXiv:0811.3001 [SPIRES];

R.C. Myers and S.E. Vazquez, Quark soup al dente: applied superstring theory,

Class. Quant. Grav. 25 (2008) 114008 [arXiv:0804.2423] [SPIRES].

[15] S.S. Gubser and A. Karch, From gauge-string duality to strong interactions: a Pedestrian’s

Guide, arXiv:0901.0935 [SPIRES].

[16] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES];

D. Mateos, String theory and quantum chromodynamics, Class. Quant. Grav. 24 (2007) S713

[arXiv:0709.1523] [SPIRES].

[17] M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of

large-Nc QCD, JHEP 05 (2004) 041 [hep-th/0311270] [SPIRES].

[18] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD,

Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES].

[19] G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy

conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079]

[SPIRES].

[20] O. Aharony, S. Minwalla and T. Wiseman, Plasma-balls in large-N gauge theories and

localized black holes, Class. Quant. Grav. 23 (2006) 2171 [hep-th/0507219] [SPIRES].

[21] S. Lahiri and S. Minwalla, Plasmarings as dual black rings, JHEP 05 (2008) 001

[arXiv:0705.3404] [SPIRES].

[22] S. Bhardwaj and J. Bhattacharya, Thermodynamics of plasmaballs and plasmarings in 3+1

dimensions, JHEP 03 (2009) 101 [arXiv:0806.1897] [SPIRES].

[23] S. Chandrasekhar, The stability of a rotating liquid drop, Proc. Roy. Soc. Ser. A 286

(1965) 1.

[24] R.A. Brown and L.E. Scriven, The shape and stability of rotating liquid drops, Proc. Roy.

Soc. London Ser. A 371 (1980) 331.

[25] V. Cardoso, The many shapes of spinning drops, Physics 1 (2008) 38.

[26] R.J.A. Hill and L. Eaves, Polygonal excitations of spinning and levitating droplets,

arXiv:0808.3704.

[27] A.V. Lebedev, A. Engel, K.I. Morozov and H. Bauke, Ferrofluid drops in rotating magnetic

fields, New J. Phys. 5 (2003) 57.

– 29 –

http://dx.doi.org/10.1088/1126-6708/2009/01/055
http://arxiv.org/abs/0809.2488
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.2488
http://arxiv.org/abs/0809.2596
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.2596
http://dx.doi.org/10.1016/j.nuclphysb.2008.12.028
http://arxiv.org/abs/0811.1794
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.1794
http://arxiv.org/abs/0811.3468
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.3468
http://dx.doi.org/10.1088/1126-6708/2009/03/025
http://arxiv.org/abs/0812.0801
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.0801
http://arxiv.org/abs/0811.3001
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.3001
http://dx.doi.org/10.1088/0264-9381/25/11/114008
http://arxiv.org/abs/0804.2423
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.2423
http://arxiv.org/abs/0901.0935
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.0935
http://arxiv.org/abs/hep-th/9803131
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9803131
http://dx.doi.org/10.1088/0264-9381/24/21/S01
http://arxiv.org/abs/0709.1523
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0709.1523
http://dx.doi.org/10.1088/1126-6708/2004/05/041
http://arxiv.org/abs/hep-th/0311270
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0311270
http://dx.doi.org/10.1143/PTP.113.843
http://arxiv.org/abs/hep-th/0412141
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412141
http://dx.doi.org/10.1103/PhysRevD.59.026005
http://arxiv.org/abs/hep-th/9808079
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9808079
http://dx.doi.org/10.1088/0264-9381/23/7/001
http://arxiv.org/abs/hep-th/0507219
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0507219
http://dx.doi.org/10.1088/1126-6708/2008/05/001
http://arxiv.org/abs/0705.3404
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.3404
http://dx.doi.org/10.1088/1126-6708/2009/03/101
http://arxiv.org/abs/0806.1897
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.1897
http://arxiv.org/abs/0808.3704


J
H
E
P
0
4
(
2
0
0
9
)
1
2
5

[28] M.M. Caldarelli, O.J.C. Dias, R. Emparan and D. Klemm, Black holes as lumps of fluid,

arXiv:0811.2381 [SPIRES].

[29] S. Chandrasekhar, Solutions of two problems in the theory of gravitational radiation,

Phys. Rev. Lett. 24 (1970) 611 [SPIRES].

[30] S. Bhattacharyya, S. Lahiri, R. Loganayagam and S. Minwalla, Large rotating AdS black

holes from fluid mechanics, JHEP 09 (2008) 054 [arXiv:0708.1770] [SPIRES].

[31] L.M. Hocking, The stability of a rigidly rotating column of liquid, Mathematika 7 (1960) 1;

L.M. Hocking and D.H. Michael, The stability of a column of rotating liquid, Mathematika 6

(1959) 25;

J. Gillis, Stability of a column of rotating viscous liquid, Proc. Camb. Phil. Soc. 57 (1961)

152;

J.P. Kubitschek and P.D. Weidman, The effect of viscosity on the stability of a uniformly

rotating liquid column in zero gravity, J. Fluid Mech. 572 (2007) 261.

[32] P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field

theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231]

[SPIRES]; Holography and hydrodynamics: diffusion on stretched horizons,

JHEP 10 (064) 2003 [hep-th/0309213] [SPIRES].

[33] R.E. Benner, O.A. Basaran, L.E. Scriven, Equilibria, stability and bifurcations of rotating

columns of fluid subjected to planar disturbances, Proc. Math. and Phys. Sciences 433 (1991)

81, available at: http://www.jstor.org/stable/51936.

[34] I. Fouxon and Y. Oz, Conformal field theory as microscopic dynamics of incompressible

Euler and Navier-Stokes equations, Phys. Rev. Lett. 101 (2008) 261602 [arXiv:0809.4512]

[SPIRES];

S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic

Navier-Stokes equation from gravity, arXiv:0810.1545 [SPIRES].

[35] R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, JHEP 09 (2003) 025

[hep-th/0308056] [SPIRES].

[36] K.-i. Maeda and U. Miyamoto, Black hole-black string phase transitions from hydrodynamics,

JHEP 03 (2009) 066 [arXiv:0811.2305] [SPIRES].

[37] M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black rings in (Anti)-deSitter space,

JHEP 11 (2008) 011 [arXiv:0806.1954] [SPIRES].

[38] S. Hollands, A. Ishibashi and R.M. Wald, A higher dimensional stationary rotating black hole

must be axisymmetric, Commun. Math. Phys. 271 (2007) 699 [gr-qc/0605106] [SPIRES].

[39] R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times,

Ann. Phys. 172 (1986) 304 [SPIRES].

[40] R. Emparan and H.S. Reall, A rotating black ring in five dimensions,

Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [SPIRES].

[41] H.K. Kunduri and J. Lucietti, Uniqueness of near-horizon geometries of rotating extremal

AdS4 black holes, Class. Quant. Grav. 26 (2009) 055019 [arXiv:0812.1576] [SPIRES].

[42] V. Cardoso, O.J.C. Dias and S. Yoshida, Classical instability of Kerr-AdS black holes and the

issue of final state, Phys. Rev. D 74 (2006) 044008 [hep-th/0607162] [SPIRES].

[43] V. Cardoso, O.J.C. Dias, J.P.S. Lemos and S. Yoshida, The black hole bomb and superradiant

instabilities, Phys. Rev. D 70 (2004) 044039 [hep-th/0404096] [SPIRES].

– 30 –

http://arxiv.org/abs/0811.2381
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.2381
http://dx.doi.org/10.1103/PhysRevLett.24.611
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,24,611
http://dx.doi.org/10.1088/1126-6708/2008/09/054
http://arxiv.org/abs/0708.1770
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.1770
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://arxiv.org/abs/hep-th/0405231
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0405231
http://dx.doi.org/10.1088/1126-6708/064/10/2003
http://arxiv.org/abs/hep-th/0309213
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0309213
http://www.jstor.org/stable/51936
http://dx.doi.org/10.1103/PhysRevLett.101.261602
http://arxiv.org/abs/0809.4512
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.4512
http://arxiv.org/abs/0810.1545
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.1545
http://dx.doi.org/10.1088/1126-6708/2003/09/025
http://arxiv.org/abs/hep-th/0308056
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0308056
http://dx.doi.org/10.1088/1126-6708/2009/03/066
http://arxiv.org/abs/0811.2305
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.2305
http://dx.doi.org/10.1088/1126-6708/2008/11/011
http://arxiv.org/abs/0806.1954
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.1954
http://dx.doi.org/10.1007/s00220-007-0216-4
http://arxiv.org/abs/gr-qc/0605106
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0605106
http://dx.doi.org/10.1016/0003-4916(86)90186-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA,172,304
http://dx.doi.org/10.1103/PhysRevLett.88.101101
http://arxiv.org/abs/hep-th/0110260
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0110260
http://dx.doi.org/10.1088/0264-9381/26/5/055019
http://arxiv.org/abs/0812.1576
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.1576
http://dx.doi.org/10.1103/PhysRevD.74.044008
http://arxiv.org/abs/hep-th/0607162
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0607162
http://dx.doi.org/10.1103/PhysRevD.70.044039
http://arxiv.org/abs/hep-th/0404096
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0404096


J
H
E
P
0
4
(
2
0
0
9
)
1
2
5

[44] V. Cardoso and O.J.C. Dias, Small Kerr-anti-de Sitter black holes are unstable,

Phys. Rev. D 70 (2004) 084011 [hep-th/0405006] [SPIRES].

[45] H.K. Kunduri, J. Lucietti and H.S. Reall, Gravitational perturbations of higher dimensional

rotating black holes: tensor Perturbations, Phys. Rev. D 74 (2006) 084021 [hep-th/0606076]

[SPIRES].

[46] H. Kodama, Superradiance and instability of black holes,

Prog. Theor. Phys. Suppl. 172 (2008) 11 [arXiv:0711.4184] [SPIRES];

A.N. Aliev and O. Delice, Superradiant instability of five-dimensional rotating charged AdS

black holes, Phys. Rev. D 79 (2009) 024013 [arXiv:0808.0280] [SPIRES];

H. Kodama, R.A. Konoplya and A. Zhidenko, Gravitational instability of simply rotating

Myers-Perry- AdS black holes, Phys. Rev. D 79 (2009) 044003 [arXiv:0812.0445] [SPIRES];

K. Murata, Instabilities of Kerr-AdS5 × S5 spacetime, arXiv:0812.0718 [SPIRES].

[47] J.L. Friedman, Ergosphere instability, Commun. Math. Phys. 63 (1978) 243;

V. Cardoso, O.J.C. Dias, J.L. Hovdebo and R.C. Myers, Instability of non-supersymmetric

smooth geometries, Phys. Rev. D 73 (2006) 064031 [hep-th/0512277] [SPIRES].

– 31 –

http://dx.doi.org/10.1103/PhysRevD.70.084011
http://arxiv.org/abs/hep-th/0405006
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0405006
http://dx.doi.org/10.1103/PhysRevD.74.084021
http://arxiv.org/abs/hep-th/0606076
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0606076
http://dx.doi.org/10.1143/PTPS.172.11
http://arxiv.org/abs/0711.4184
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.4184
http://dx.doi.org/10.1103/PhysRevD.79.024013
http://arxiv.org/abs/0808.0280
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.0280
http://dx.doi.org/10.1103/PhysRevD.79.044003
http://arxiv.org/abs/0812.0445
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.0445
http://arxiv.org/abs/0812.0718
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.0718
http://dx.doi.org/10.1007/BF01196933
http://dx.doi.org/10.1103/PhysRevD.73.064031
http://arxiv.org/abs/hep-th/0512277
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0512277

	Introduction
	Dual hydrodynamic description of gravity
	A brief summary of our results

	Relativistic hydrodynamic equations 
	Relativistic hydrodynamic equations 
	Hydrodynamical and thermal equilibrium conditions. Equation of state 
	Conserved charges

	Equilibrium solutions: rigidly rotating plasma balls and rings 
	Plasma balls
	Plasma rings
	The hydrodynamic regime 

	Stability analysis of plasma balls and rings. 
	Perturbations of the equilibrium solutions: inviscid relativistic case
	Plasma balls: instability and critical rotation in the inviscid case
	Viscosity: instability and critical rotation in the non-relativistic case

	Bifurcation to two-lobed configurations: rotating plasma peanuts
	Unstable plasma balls and their dual black holes
	On the stability of plasma rings 

